
   

 

Page 1  Confidential: X210609 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GETTING STARTED WITH FREERTOS APPLICATION PROGRAMMING 
ON XCORE USING THE AIOT SDK 
 

 

WHITEPAPER 

JUNE 2021 

 

 

 

 



   

 

Page 2  Confidential: X210609 

 

 

RATIONALE 
 

Traditionally, xcore multi-core processors have been programmed using the XC language. The 
XC language allows the programmer to statically place tasks on the available hardware cores and 
wire them together with channels to provide inter-process communication. The XC language also 
exposes "events," which are unique to the xcore architecture and are a useful alternative to 
interrupts.  

Using a combination of tasks statically placed on hardware cores, channels, and events, it is 
possible to write software with deterministic timing, and with very low latency between I/O and 
software, as well as between tasks. 

While XC elegantly enables the intrinsic, unique capabilities of the xcore architecture, there often 
needs to be higher level application type software running alongside it. The features and 
approaches that make lower level deterministic software possible may not be best suited for those 
parts of an application that do not require deterministic timing. Where strict real-time execution is 
not required, higher level abstractions can be used to manage finite hardware resources, and 
provide a more familiar programming environment. 

A symmetric multiprocessing (SMP) real time operating system (RTOS) can be used to simplify 
xcore application designs, as well as to preserve the hard real-time benefits provided by the 
xcore architecture for the lower level software functions that require it. 

This document assumes familiarity with real time operating systems in general. Familiarity with 
FreeRTOS specifically should not be required, but will be helpful. For current up to date 
documentation on FreeRTOS see the following links on the FreeRTOS website. 

• Overview 
• Developer Documentation 
• API 

 
1.  SMP FREERTOS 

 

To support this new programming model for xcore, XMOS has extended the popular and free 
FreeRTOS kernel to support SMP (now upstreamed to Amazon Web Services). This allows for the 
kernel's scheduler to be started on any number of available xcore logical cores per tile, leaving 
the remaining free to support other program elements that combine to create complete systems. 
Once the scheduler is started, FreeRTOS threads are placed on cores dynamically at runtime, 
rather than statically at compile time. All the usual FreeRTOS rules for thread scheduling are 
followed, except that rather than only running the single highest priority thread that is ready at any 
given time, multiple threads may run simultaneously. The threads chosen to run are always the 
highest priority threads that are ready. When there are more threads of a single priority that are 
ready to run than the number of cores available, they are scheduled in a round robin fashion. 

SMP SPECIFIC CONSIDERATIONS 

Programming an application for a multiprocessor environment using an SMP RTOS is very similar 
to programming for a single processor environment using an RTOS. Most of the time, it is almost 



   

 

Page 3  Confidential: X210609 

 

identical and the fact that there are multiple cores available to the threads is a detail that the 
programmer does not need to worry about. However, there are some differences that the 
programmer must take into account to avoid race conditions which do not exist when there is only 
a single processor core available to the RTOS. 

It is possible for multiple threads to run simultaneously on different cores. This is obvious, and is 
the point of an SMP RTOS. But it may not be immediately obvious why this requires special 
consideration above what must already be considered when programming for a multi-threaded, 
but single processor, environment. 

The first big difference that this introduces is that it is now possible for threads with different 
priority levels to run simultaneously. In a single core environment, when two threads with different 
priorities share a data structure, it is not necessary for the higher priority one to enter a critical 
section when using it. This is no longer true in a multiprocessor environment. Any instance where 
a thread assumes that a lower priority thread will not run is no longer valid when using an SMP 
RTOS. 

The second big difference is with interrupt service routines (ISRs). In a single processor 
environment, ISRs cannot run simultaneously either with each other (although there is a similar 
issue for architectures that support interrupt priority levels and nesting) or with application 
threads. Of course, all of this is possible in a multiprocessor environment. So, there must be a way 
to ensure mutual exclusion for access to data structures that are shared both between multiple 
ISRs, as well as between ISRs and threads. 

FreeRTOS already provides the macro functions taskENTER_CRITICAL_FROM_ISR() and 
taskEXIT_CRITICAL_FROM_ISR() for use with ports for architectures that support interrupt 
nesting. The SMP FreeRTOS port for xcore makes use of these and uses an xcore hardware lock 
under the hood. Be sure to remember to use these in ISRs around access to data that is shared 
with threads and requires mutual exclusion. The corresponding task version macro functions 
taskENTER_CRITICAL() and taskEXIT_CRITICAL() must be called by threads that access this 
shared data. The task version both disables interrupts on the calling core, as well as obtains the 
lock. 

NEW FEATURES 

Two new APIs have been added to FreeRTOS to support SMP and xcore. Similar capability is also 
found in other RTOSes that support SMP. 

1. The first allows a FreeRTOS thread to be excluded from any number of cores. This is done 
with a core exclusion mask. This supports various scenarios. 

o One common scenario is having a task that fully utilises the xcore architecture and 
requires deterministic execution. Most FreeRTOS applications, however, require 
a timer interrupt that runs periodically, typically once every 1 or 10 milliseconds. 
The xcore SMP FreeRTOS port always places this timer interrupt on core 01. When 
execution of this interrupt’s service routine breaks the timing assumption made by 
tasks that require deterministic execution, and it is not feasible to disable interrupts 
around its critical sections, then it can make sense to exclude these tasks from 
core 0. 

 

1. This is not necessarily core 0 as returned by get_logical_core_id() found in xs1.h. SMP FreeRTOS maintains its own core 
ID numbering for the cores that it resides on. For the SMP RTOS core ID value, use rtos_core_id_get() instead. 



   

 

Page 4  Confidential: X210609 

 

o Another scenario is when there are two or more “legacy” threads written with the 
assumption that they are running in a single core environment. It is common to find 
that the higher priority threads will often not enter a critical section when modifying 
data structures shared with lower priority threads, as it is not possible for the lower 
priority threads to pre-empt the higher priority threads. While this is still true in an 
SMP environment, it is possible that the lower priority thread can run 
simultaneously in another core. Therefore, additional protection must be added 
(see the discussion above about this). When it is not possible to modify the code 
to add this protection, for example when the functions are part of a third party 
library, then it can make sense to lock all of these threads to a single core, 
ensuring that they do not run simultaneously. 

The two new functions to support this are: 

void	vTaskCoreExclusionSet(	const	TaskHandle_t	xTask,	UBaseType_t	uxcoreExclude	)	

This function sets the specified thread’s core exclusion mask. Each bit position represents the 
corresponding core number, supporting up to 32 cores. Subsequent to the call, the task will be 
prevented from running on any core whose corresponding bit in the mask is set to 1. 

UBaseType_t	vTaskCoreExclusionGet(	const	TaskHandle_t	xTask	)	

This function returns the specified thread’s current core exclusion mask. 

The second new feature allows pre-emption to be disabled at runtime on a per thread basis. 
Global pre-emption may still be disabled at compile time with the configuration option 
configUSE_TASK_PREEMPTION_DISABLE. 

This allows threads to ensure that they are never pre-empted by another lower or same priority 
task. This can be useful for tasks that require deterministic execution but that do not necessarily 
need to be run at the highest priority level. For example, a thread that spends much of the time 
blocked in a waiting state, but once woken up and running must not be interrupted. Disabling 
interrupts within these tasks may also be required, but by additionally disabling pre-emption the 
scheduler will not even attempt to pre-empt it, ensuring that other threads continue running as 
they should. 

The two new functions to support this are: 

void	vTaskPreemptionDisable(	const	TaskHandle_t	xTask	)	

This function disables pre-emption for the specified thread. 

void	vTaskPreemptionEnable(	const	TaskHandle_t	xTask	)	

This function enables pre-emption for the specified thread. 

Aside from the above additions, the API is identical between the single core FreeRTOS kernel and 
the SMP FreeRTOS. Any code that has been written for single core FreeRTOS should compile and 
work under SMP FreeRTOS. Just be aware of the single core assumption that is occasionally 
made and account for it as necessary. 

2.  XCORE RTOS DRIVERS 
 



   

 

Page 5  Confidential: X210609 

 

To help ease development of xcore applications using an SMP RTOS, XMOS provides several 
SMP RTOS compatible drivers. These include, but are not necessarily limited to: 

• Common I/O interfaces 
o GPIO 
o I2C 
o I2S 
o PDM microphones 
o QSPI flash 
o SPI 
o USB 

 
• xcore features 

o Intertile channel communication 
o Software defined memory (xcore.ai only) 

 
• External parts 

o Silicon Labs WF200 series WiFi transceiver 

These drivers are all found in the AIoT SDK under the path modules/rtos/drivers. 

Documentation on each of these drivers can be found under the References/RTOS Drivers section 
in the AIoT SDK documentation pages. 

It is worth noting that these drivers utilize a lightweight RTOS abstraction layer, meaning that they 
are not dependent on FreeRTOS. Conceivably they should work on any SMP RTOS, provided an 
abstraction layer for it is provided. This abstraction layer is found under the path 
modules/rtos/osal. At the moment the only available SMP RTOS for xcore is the SMP FreeRTOS, 
but more may become available in the future. 

XMOS also includes some higher level RTOS compatible software services, some of which the 
aforementioned drivers. These include, but are not necessarily limited to: 

• DHCP server 
• FAT filesystem 
• HTTP parser 
• JSON parser 
• MQTT 
• SNTP client 
• TLS 
• USB stack 
• WiFi connection manager 

These services are all found in the AIoT SDK under the path modules/rtos/sw_services. 

3. RTOS APPLICATION DESIGN 
 

A fully functional example application that demonstrates usage of a majority of the available 
drivers can be found in the AIoT SDK under the path examples/freertos/independent_tiles. In 
addition to being a reference for how to use most of the drivers, it also serves as one example for 
how to structure an SMP RTOS application for xcore. 

This example application runs two instances of SMP FreeRTOS, one on each of the processor’s 
two tiles. Because each tile has its own memory, which is not shared between them, this can be 



   

 

Page 6  Confidential: X210609 

 

viewed as a single asymmetric multiprocessing (AMP) system that comprises two SMP systems. A 
FreeRTOS thread that is created on one tile will never be scheduled to run on the other tile. 
Similarly, an RTOS object that is created on the tile, such as a queue, can only be accessed by 
threads and ISRs that run on that tile and never by code running on the other tile. 

That said, the example application is programmed and built as a single coherent application, 
which will be familiar to programmers who have previously programmed for the xcore in XC. Data 
that must be shared between threads running on different tiles is sent via a channel using the 
RTOS intertile driver, which under the hood uses a streaming channel between the tiles. 

Most of the I/O interface drivers in fact provide a mechanism to share driver instances between 
tiles that utilizes this intertile driver. For those familiar with XC, this can be viewed as a C 
alternative to XC interfaces. 

For example, a SPI interface might be available on tile 0. Normally, initialization code that runs on 
tile 0 sets this interface up and then starts the driver. Without any further initialization, code that 
runs on tile 1 will be unable to access this interface directly, due both to not having direct access 
to tile 0’s memory, as well as not having direct access to tile 0’s ports. The drivers, however, 
provide some additional initialization functions that can be used by the application to share the 
instance on tile 0 with tile 1. After this initialization is done, code running on tile 1 may use the 
instance with the same driver API as tile 0, almost as if it was actually running on tile 0. 

The example application referenced above, as well as the RTOS driver documentation, should be 
consulted to see exactly how to initialize and share driver instances. 

The AIoT SDK provides the ON_TILE(t) preprocessor macro. This macro may be used by 
applications to ensure certain code is included only on a specific tile at compile time. In the 
example application, there is a single task that is created on both tiles that starts the drivers and 
creates the remaining application tasks. While this function is written as a single function, various 
parts are inside #if ON_TILE() blocks. For example, consider the following code snippet found 
inside the task vApplicationDaemonTaskStartup(): 

#if	ON_TILE(I2C_TILE)	
{	
					int	dac_init(rtos_i2c_master_t	*i2c_ctx);	
					if	(dac_init(i2c_master_ctx)	==	0)	{	
	 rtos_printf("DAC	initialization	succeeded\n");	
	 dac_configured	=	1;	
					}	else	{	
	 rtos_printf("DAC	initialization	failed\n");	
	 dac_configured	=	0;	
					}	
					chan_out_byte(other_tile_c,	dac_configured);	
}	
#else	
{	
					dac_configured	=	chan_in_byte(other_tile_c);	
}	
#endif	
	

When this function is compiled for tile I2C_TILE, only the first block is included. When it is 
compiled for the other tile, only the second block is included. When the application is run, tile 
I2C_TILE performs the initialization of the DAC, while the other tile waits for the DAC initialization to 
complete. 



   

 

Page 7  Confidential: X210609 

 

I2C_TILE is defined at the top of the file. Because the I2C driver instance is shared between the 
two tiles, it may in fact be set to either zero or one, providing a demonstration of the way that 
drivers instances may be shared between tiles. 

The AIoT SDK provides a single XC file that provides the main() function. This provided main() 
function calls main_tile0() through main_tile3(), depending on the number of tiles that the 
application requires and the number of tiles provided by the target xcore processor. The 
application must provide each of these tile entry point functions. Each one is provided with up to 
three channel ends that are connected to each of the other tiles. 

The example application provides both main_tile0() and main_tile1(). Each one calls an 
initialization function that initializes all the drivers for the interfaces specific to its tile. These 
functions also call the initialization functions to share these driver instances between the tiles. 
These initialization functions are found in the board_init.c source file. 

Each tile then creates the vApplicationDaemonTaskStartup() task and starts the FreeRTOS 
scheduler. The vApplicationDaemonTaskStartup() task completes the driver instance sharing and 
then starts all of the driver instances. Additional application demo tasks are created before 
vApplicationDaemonTaskStartup() completes by deleting itself. 

The application may be experimented with by modifying the *RPC_ENABLED macros in 
board_init.h, as well as the *_TILE macros at the top of main.c. RPC here stands for Remote 
Procedure Call, and is what allows for driver instances to be shared. Provided RPC is enabled for 
a particular driver, it may be used by either tile and the corresponding *_TILE macros for it may 
be set to either tile. However, if RPC is disabled then note that when the corresponding *_TILE 
macro is not set to the tile that owns the instance, the application will fail. 

Consult the RTOS driver documentation for the details on what exactly each of the RTOS API 
functions called by this application does. 

For a more interesting application that does more than just exercise the RTOS drivers see the 
example application under the path examples/freertos/explorer_board. This application does not 
provide as complete an example of how to use and share all of the drivers, but does utilize many 
of the software services. 

4. BUILDING RTOS APPLICATIONS 
 

RTOS applications using the AIoT SDK are built using CMake. The AIoT SDK provides many 
drivers and services, all of which have .cmake files which can be included by the application’s 
CMakeLists.txt file. The application’s CMakeLists can specify precisely which drivers and software 
services within the AIoT SDK should be included through the use of various CMake options. 

The example applications also provide a Makefile that actually runs CMake and then runs make 
with the generated CMake makefiles. This is done to automate the steps that must be taken to 
build for more than one tile. The Makefile actually runs CMake once per tile. Each tile is built 
independently, and the two resulting binaries are then stitched together by the Makefile. 

By simply running: 

$	make	-j	
	
in the example application directories, all the steps necessary to build the entire application are 
taken, and a single binary that includes both tiles will be found under the bin directory. If the xcore 
board is connected to the computer via an xTag, running: 



Page 8 Confidential: X210609 

$	make	run	

will run it on the board with xscope enabled so that all debug output from the application will be 
routed to the terminal. 

To access the SMP FreeRTOS, please visit https://www.freertos.org/. To find out more about our 
xcore processors, please visit https://www.xmos.com/processors/.  

Copyright © 2021, All Rights Reserved. 

Xmos Ltd. is the owner or licensee of this design, code, or Information (collectively, the “Information”) and is providing it to you 
“AS IS” with no warranty of any kind, express or implied and shall have no liability in relation to its use. Xmos Ltd. makes no 
representation that the Information, or any particular implementation thereof, is or will be free from any claims of infringement and 
again, shall have no liability in relation to any such claims. 


